
International Journal of Theoretical Physics, Vol. 32, No. II, 1993 

The KN Algebras and the Geometrical Quantization of 
Heterotic Strings 

Bang-qing Xu, l Dian-yan Xu, 2 and Chang-giu Chao 3 

Received July 30, 1992 

By means of the KN algebra, the Virasoro and Kac-Moody superalgebras are 
extended on a genus-g Riemann surface. These are realized in the framework of 
heterotic superstring with the WZ term coupling the fiber bundle. Then we 
construct the corresponding BRST operators, which provide the critical dimen- 
sion. 

1. INTRODUCTION 

Since Krichever and Novikov introduced KN algebra (Krichever et  
al., 1987a,b), work extending this algebra into conformal fields has been 
very successful (Bonora et  al., 1988a,b; Xu and Zhao, 1990). Krichever and 
Novikov introduce a new formalism which is a strong tool. These works 
consider the algebra (to be referred to as KN algebra) in a general 
formalism of meromorphic vector fields which are holomorphic outside two 
distinguished points and introduce an explicit countable basis. In terms of 
these basis elements, one can develop an operator out of an arbitrary 
Riemann surface while preserving an explicit dependence on the genus. 
Moreover, some authors have studied bosonic strings and superstrings on 
a genus-g Riemann surface and recovered the critical dimensions for any 
genus remain 26 and 10 for the bosonic string and superstring, respectively 
(Liu et  al., 1990; Harari, 1987). Liu et  al. (1990) discussed the case when 
the motion space of the string is M d x G, where M d is a d-dimensional 
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Minkowski space and G is a da-dimensional group manifold. By construct- 
ing a BRST charge using the method of  geometrical quantization, Liu et al. 
(1990) studied the Sugawara construction and gave the critical dimension. 

The organization of this paper is as follows: In Section 2 the KN 
algebra and the scheme of geometrical quantization are reviewed and 
the heterotic superstring WZ term coupling the fiber bundle is intro- 
duced. In Section 3 the curvatures of the holomorphic bundle of the string 
and a vacuum bundle are calculated. In conclusion, in Section 4 we 
perform the quantization procedure for a heterotic superstring coupling a 
fiber bundle. 

2. THE KN ALGEBRA AND GEOMETRICAL QUANTIZATION 

We consider a Riemann surface of  genus g with two distinguished 
points P+, P_ and local coordinates Z+ ,  Z_ around them, such that 
Z_+ (P• = 0. There exists a whole family of tensors f}).x) parametrized by 
two real numbers 2 (the conformal weight) and x. The f}ax) are holomor- 
phic everywhere on E except possibly for poles or branch points in P+ and 
P_ and a branch cut from P+ to P ..... This can be considered as an 
extended case of a Kahler manifold existing usually on a Riemann surface 
Z with genus zero. Moreover, the expansion off}  )',x) near P• is of  the form 

f}~.x) = a};.,x)+_Z~sb.~ • [1 + O(Ze)l(dz• (2.1) 

where S(2) = g - 2 ( g  - 1) and a~ ~J)• are constants to be specified below. 
In particular, for different values of 2 and x, we obtain the meromorphic 
vector fields of the function Aj =fS0.0), the one-differentials f~s =f}2.0), 
respectively, which are holomorphic except at P+ (the definitions of Aj and 
wj have to be slightly modified for [Jl =< �89 due to the Weierstrass theorem). 
According to  whether g is even or odd, j is an integer, j . . . .  , 
- 1 ,  0, 1 . . . .  , or half-integer, j . . . .  , -�89189 . . . .  , respectively. On the 
other hand, we introduce the meromorphic spinor fields g= = g}-1/2.o) when 

= integer and r ( -  m.~/2.o) s(j+ i/2) when ~t = j  + 1/2, the half-differentials h_~ = 
f0_~ 2"~ when e = j  integer and h_~ -s(- ~-(1/2,1/~)j+ 1/2) when a = j  + 1/2 half-integer, 
and the 3/2-differentials K s -  r - J (  s+ 1/2) when a = j  + 1/2 half-integer, where 
ct is an integer (Ramond sector) or half-integer (Neveu-Schwarz sector). 
Due to the Riemann-Roch theorem, the above basic elements are deter- 
mined up to an arbitrary constant. So, we normalize them by setting 
a~ ;''~ = 1; al ~'~) will then be uniquely determined as well as all the  co- 
efficients appearing in the tails O(Z• 

Let us come now to the bilinear operations which will allow us to 
define a superalgebra. It follows from an analysis of the singularities in P• 
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that (Bonora et al., 1988a) 

go 3 
z e ~_. [et, e:]= ~ C t j t + j _ z g  o -~g (2.2a) 

z =  --go 

go 

[e,,g~]= ~ H~,gt+,_  z. (2.2b) 
z =  - - g o  

g 

{g=, ge ) = ~ B~#e= + #_ p/2 (2.2c) 
p =  --g 

The coefficients C~., Ht z, and B ~  can be calculated from the constants 
appearing in the expansion of e; and g= near P_+; for example, in the 
simplest case, we have Cw o = j  - i, Hgt o = ~ - i/2 - g + go~2, Bg~e = 2. It is 
easy to check that the following duality relations hold: 

2~---i A , (Q)Wj(Q)  = 6,j (2.3a) 

2rc---ii e,(Q)f~j(Q) = 6t: (2.3b) 
lr 

g=(Q)Ka(Q) = g=a (2.3c) 
z 

~ h~(Q)b~ (Q) = 6~  (2.3d) 
z 

where h~ + = h ~  and C~ denoted a level curve of the univalent function 
, (Q) (Liu et al., 1990). The central extensions of these algebras are defined 
by means of cocycles 

)~(e,, ej) = ~ )~(et, ej) (2.4a) 

q~(g~, g~) = ~ q3(g~, g~) (2.4b) 

where the integral is over a contour surrounding P+ and )~, ~ are defined 
as follows. Let f, g and p, a be meromorphic vector fields and meromorphic 
spinor fields, respectively, which are holomorphic on E except possibly for 
poles or branch points in P_+ (with associated branch cuts), and let 

f = f ( Z + _ )  O/OZ+, g = g(Z+ ) O/dZ+ 

p = p ( Z +  ) ( d Z +  ) - 1 / 2  (7 = ( ~ ( Z + ) ( d Z +  ) -  1/2 
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near P+;  then one finds 

~( f ,g )  = [ l ( f , , , g _ g , , , f ) - R ( f ' g - g ' f ) ] d Z +  (2.5a) 

q~(p, tr) = p" a" dZ + (2.5b) 

where R is a Schwarzian connection (Liu et al., 1990). 
Thus the central extension of both NS-KN and R-KN superalgebras is 

as follows: 

g o  

[et, ej]= ~, C~et+j_~go + X(et, ej) (2.6a) 
z = - - g o  

go 

[et, g~]= E H ~ + , _ :  (2.6b) 
z = - - g o  

g 

{g~,ga}= ~ B{tje~+ls_p/2+t~p(g~,gss) (2.6c) 
p =  - - g  

[et, t] = [g,, t] = 0 (2.6d) 

which reduce to the usual Neveu-Schwarz and Ramond superalgebras in 
the genus-zero case. 

We can calculate the cocycles X and ~p in a few cases. For example, for 
k = 0 ,  

x(et, e3g_ t) = 1 (i -- go) 3 -- (i -- go) 

1 _ _ g ) 2 + l  

(2.7a) 

(2.7b) 

3. THE CURVATURE OF THE HOLOMORPHIC BUNDLE OF 
THE STRING AND A VACUUM BUNDLE 

Next, we consider the energy-momentum tensor of a heterotic super- 
string with the WZ term coupling the fiber bundle (Xu et al., 1990; 
Bergshoeff et al., 1986a,b) 

1 1 1 jaja 1 1 

and the supersymmetric current 

r =  v /2X  . tgX, + 6  w/-kf"b<4Oa4Obq~< (3.2) 
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Here the manifold of  the heterotic superstring is taken as a product of 
d-dimensional Minkowski space Md with the dr-dimensional G, Md X G; 
j a  is the conserved current on G and X is its supersymmetric partner. The 
constant is defined by 8abC,~ =fa~af~b d with fab~ being the structure con- 
stants of  group G. Let X ~', Z ~, ~', Ja, tp a, ~k +, T, F h a v e  conformal weights 0, 
I 1 1 1 3 ~, ~, ~, 1, ~, �89 2 and ~, respectively. For the geometrical quantization, 
suppose (p is a multiplet of  spin - 1 / 2  fields holomorphic outside P •  
transforming according to a real representation of  G, and let T a denote the 
antisymmetric matrices representing the generators of G. Thus, it follows a 
quantum level that 

ja = ~ :d/(Q)T~b(Q): = ~ :~bt(Q)(T~)~bt(Q): (3.3) 

where T ~ satisfies 

1 fabcTc (3.4a) [T o,  rb] = 

Tr( T a T b) = - K~ bab ( 3.4b) 

C2 6~d = fabcFaba (3.4C) 

where f~c  is the structure constant of  group G. 
We are now in a position to expand the tensor fields in (3.1) in terms 

of  the relevant bases as follows: 

2 =0 :  

3, =�89 

X'(Q) = ~, X~At(Q) (3.5a) 
t 

Xf  = ~ XU(Q)og(Q) (3.5b) 

)~U(Q) = ~ d~h,(Q) (3.5c) 

1 ~C d~ = ~-~ z"(Q)h + (Q) (3.5d) 

~"(Q) = ~ t~h=(Q) (3.5e) 

t~ = ~ ~"(Q)h + (Q) (3.5t") 
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2 = 1 :  

;t =~: 

2 = 2: 

q~(Q) = ~ s~h~(Q) 

s~ = ~ e ~(Q)h~ + (Q) 
T 

~kI(Q) = ~, u~h~(Q) 

dXU(Q) + pU(Q) = x~ ~ ~. otuco,,(Q) 
n 

x/~o~"~ = ~ [dX#(Q) + p"(Q)IA. (Q) 
,r  

J"(Q) = ~ J~co,,(Q) 
n 

2rci ~c~ J"(Q)A.(Q) 

p~'(Q) = ~. Pu~,,(Q) 
n 

F(Q) = ~ F~,K~(Q) 
ez 

F. = ~ F(Q)g~(Q) 

T(Q) = ~ L. O. (Q) 
n 

L,~ = ~ i  T(Q)e,,(Q) 

Xu et aL 

(3.5g1 

(3.5h) 

(3.5i) 

(3.5j) 

(3.5k) 

(3.51) 

(3.5m) 

(3.5n) 

(3.5o) 

(3.5p) 

(3.5q) 

(3.5r) 

(3.5s) 

(3.5t) 
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where P~ is the conjugate momentum of X ~. The Poisson brackets of these 
tensors read 

[X,(Q), pv(Q,)] = i -~WA~(Q,  Q') (3.6a) 

{z~(Q), x~(Q')} = i-~q~a~(Q, Q') (3.6b) 

{~(Q), ~(Q')} = i-1qu~6~(Q, Q') (3.6c) 

{r q~b(Q,)} = i -  'q~ba,(Q, Q') (3.6d) 

{~o/(Q), CS(Q,)} = i-~qtsa,(Q, Q') (3.6e) 

[ja(Q), jb(Q,)] = 4 fab~ jC (Q)A , (Q ,  Q,) (3.6f) 
,/k 

where 

A~(Q, Q') = ~ A.(Q)oo.(Q') (3.7) 
n 

6~(Q, Q') = ~ hn(Q)h + (Q') (3.8) 
h 

play the role of &function over C~ for smooth tensors with weight 0 and 
1/2, respectively. 

Owing to (2.1), one can obtain the Poisson brackets for the coefficients 
of the mode expansion: 

[X, ~, P~,] = i-'r/'~6,,, (3.9a) 

{ ~ ,  ct~ } = i-~rlU~r,m (3.9b) 

{dU~, d} } = i -  'quv6~ + ~.o (3.9c) 

{t~, t} } = i-1~1"~6~+~,o (3.9d) 

a b - - l~ab(~ l  (3.9e) {s=,se} = i  +8,o 

{u~, u~ } = i -  'ql'a= + a,o (3.9f) 

=--~-. f ~m.J~ + i-lbabrm. (3.9g) 
,/k 

where 

rm, = ~ni Am dA, (3.10a) 

~ "  = ~ i  A"Anc~ (3.10b) 
r 
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Thus, we have 

L m  = " ~ i  e . ( Q ) T ( Q )  
T 

where 

Xu et al. 

1 Z 1 E 1 ~ D~ptut~ 
2 nt ~ n l ~ n ~ l  "~- 4 ~tfl 

1 Z 1 x.Dms.sa 1 ,,, , I 

1 ~.,E~ d a . a  i ~'~ rabcoa b cr2eL 

(3.11) 

(3.12) 

z4 nr~ = ~ /  (O n ~otem (3.13a) 
1: 

5 = (h#Oh  - (3.t3b) 

E~ = ~ i  h~m.g, (3.13<:) 
1: 

G~,,~ = ~ h#h,h~g~ (3.13d) 

Here e, fl, Y, and 6 are either integers (Ramond sector) or half-integers 
(Neveu-Schwarz sector). Therefore, we may form the Poisson br~ke~s of  
Lm and F~ as follows: 

[Lm, L~] i-' ~ ~ (3.14a) = C m n L m  + n + --z 
Z = --gO 

go 
[L,,,,F~]=i-' • I-/Z~,F,,,+~,+_~ (3.1,1~b) 

Z = - - g o  

{F,,,F~}=i -1 ~ B~#L~+#_p/2 (3.14r 
P ~  --go 

These relations reduce to the usual one in the genus-zero case. In t ~  
quantum case we must take care of operator ordering; L.  will be me~-f~l  
a s  
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1 1 !E /~m n~- -~Z/..~ :~.~: +~ X n~5 :d~d~:+ D~,~ :t~t~: 

1 1 1 E m . i , .  

1 ~ l,,'~ :o~o~':+ D,,~ :d~d~:+ -~D,mp :tut~: 
2 ,l 4 ~r ~a 

1 1 m . a a.  .U~U//. + ~ E n , ,  .~,~,. + ~ E o-m~ " I I. 

1 m p q a a " [ ] / ,  ~r fl ~ ~, ~] 6 �9 8(C~ +k) ~ ApqE~'E~a(T )ty(T )kt" t y k t. 

where 

(3.15) 

where 

K=Ez~2~ 
A 

is the Kahler potential. Next, we define a Hilbert space H spanned by 
endowed an inner product as 

(~/1,  ~12) = .~ ~ffl 1//2 det co (3.18) 

Then the third step amounts to a Kahler polarization procedure, i.e., to 
putting a constraint on ~: 

qJ = e-K/2O, dO = 0 (3.19) 

The above condition (3.17) means that ~ is a holomorphic function on F. 
The function ~, spans the prequantum Hilbert space H r and contains the 
quantum wave function. 

E~,a = ~ h~haAn(Q) 

From now on, we state briefly the geometrical quantization (Liu et aL, 
1990). Take a complex Kahler manifold F and define the Poisson brackets 
as  

[ZA, Zn] = i-16An (3.16) 

The two-form in a Kahler manifold F is defined as 

09 = i Z dZA ^ dZA = iO~K (3.17) 
A 
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4. THE GEOMETRICAL QUANTIZATION 

We use the BRST scheme to quantize this model. First, a BRST 
charge operator on Y~ is defined corresponding to the NS-KN and R-KN 
superalgebras: 

1 g-o~ C,~n.z "C C h m+ . . . .  Q = _ :L.C.: + ~ F_~7 . : -  2 ~ V 5" - V . . . .  ~ �9 
?t Ct ro,n z =  - - ~ 0  

60 ~0 

- ~  ~ H~,:7_~C_nfl ,+~_~:-  ~ ~ B~m~:T-.7-r 
n , ~  z = - - g o  ~,fl  P =  - - z 0  

--ac (4.1) 

Here, the constant a takes into account the ambiguity in normal ordering 
of the operators, and b., C. and fl., 7~ are the conforrnal and superconfor- 
mal ghosts on a Riemann surface with genus g, respectively. The following 
anticommutation and commutation relations hold: 

{(7., Cm } = 6,. +.,0 (4.2) 

[7~, flt~] = 6=+a,o (4.3) 

After the quantization, the algebra does not close, one has 

L~, = - 2  n,t An"~ :e~ef: + ~ ~ Drop :d~d~: 1 1 

1 
+ -4 ~ D~ma :C~,s~: (4.4a) 

' o .  
F'~ = ~" E~t~ :ctV"d~: (1 + C a /2k) 1/2 \n~ E~'a "J"s t~" 

, ) 
�9 . ~ f l y ~ j  S f l  . S ? S  6 6x/~ a~aE ,v.~ r~b~ . .  b c (4.4b) 

Then, in virtue of the charge operator Q, we may define new operators s 
and F: 

go 

s  {Q,b . }  L ; + ~  ~ C b = ~-- - - m n - - - - m  r n + n - - z  
m z = g  0 

go  

- - 2  ~ H ~ 7 - . f l . + . _ z  -a6. ,o  (4.5a) 
~t 5 =  - - g o  

g o  

/~=[Q,  f l ~ ] = F ; - ~  ~ H,~:C_~fl~+~_~ 
z z = - - g o  

g o  

--~,  ~ B~p :7_t~b.+t~_p/2: (4.5b) 
~t Z = - - g o  
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After a tedious (but simple) calculation, we arrive at 

go 
[ j~m,E~n]  E z " = CmnLm+n-z  "~- ~mn (4.6a) 

z = --go 

go 
[s P~] ~. z " z (4.6b) = H,,~Fm+~_ 

Z = --go 

go 
{/~e' /~3 } = E B P f l J L o ~ + a - p / 2 - l - O c ~ 3  (4.6c) 

z= --go 

where the anomalous terms can be expressed as 

{ 1 
2 = d - 5 - - ~  dG 3 1 + CA/2k  )~(em, e .)  (4.7a) 

{ 1 2 dG } 
~o,~= d 3 3 l + ~ / 2 k  q~(g~'ga) (4.7b) 

When 

f 
l for NS sector (4.8a) 

a =  1 1 d - ~ ( d - 2 ) - 5  G for Rse c to r  (4.8b) 

1 2 1 (4.8c) 
I =  1 0 + ~ d  c + s d c  1 + CA/2k  

the nilpotential condition for the BRST charge Q, Q z =  0, implies the 
critical dimension of  the motion space of  a heterotic superstring with the 
WZ term coupling the fiber bundle. If  a and I satisfy (4.8a) or (4.8b) and 
(4.8c), respectively, we get the critical dimension 

1 2 d~ (4.9) 
d = 5 - -~ d~ 3 l + C A /2k  
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